To cite this code, please use:
Code used in the article: https://doi.org/10.1016/j.neuroimage.2020.117372
This repo contains implementations of a coupled oscillator model following the complex Stuart-Landau equations (CSLE) on a 2D lattice.
The code is available in Python and Julia.
Ref.: Aranson, I.S., Kramer, L., The world of the complex Ginzburg-Landau equation. Rev Mod Phys 74(1):99-143, 2002.
Rendered page: https://frederic-vw.github.io/csle-2d/
Python Requirements:
pip install package-name
)
Julia Requirements:
julia > using Pkg; Pkg.add("Package Name")
)
The lattice model is defined by:
Noise is added via stochastic integration:
The main function call running the simulation is: csle2d(N, T, t0, dt, s, D, mu0, mu1)
:
N
: lattice size (N,N)
T
: number of simulation time stepst0
: number of ‘warm-up’ iterationsdt
: integration time steps
: noise intensity (σ)D
: diffusion constantmu0,mu1
: bifurcation parameter (start, end values)Outputs: (T,N,N)
array as NumPy .npy format and as .mp4 movie.
Parameters:
N = 128, T = 2500, t0 = 0, dt = 0.05, s = 0.05, D = 1.0, mu0 = -0.05, mu1 = 0.5